Stimulation of Na,K-ATPase by low potassium requires reactive oxygen species.

نویسندگان

  • Xiaoming Zhou
  • Wu Yin
  • Sonia Q Doi
  • Shawn W Robinson
  • Kunio Takeyasu
  • Xuetao Fan
چکیده

The signaling pathway that transduces the stimulatory effect of low K+ on the biosynthesis of Na,K-ATPase remains largely unknown. The present study was undertaken to examine whether reactive oxygen species (ROS) mediated the effect of low K+ in Madin-Darby canine kidney (MDCK) cells. Low K+ increased ROS activity in a time- and dose-dependent manner, and this effect was abrogated by catalase and N-acetylcysteine (NAC). To determine the role of ROS in low-K+-induced gene expression, the cells were first stably transfected with expression constructs in which the reporter gene chloramphenicol acetyl transferase (CAT) was under the control of the avian Na,K-ATPase alpha-subunit 1.9 kb and 900-bp 5'-flanking regions that have a negative regulatory element. Low K+ increased the CAT expression in both constructs. Catalase or NAC inhibited the effect of low K+. To determine whether the increased CAT activity was mediated through releasing the repressive effect or a direct stimulation of the promoter, the cells were transfected with a CAT expression construct directed by a 96-bp promoter fragment that has no negative regulatory element. Low K+ also augmented the CAT activity expressed by this construct. More importantly, both catalase and NAC abolished the effect of low K+. Moreover, catalase and NAC also inhibited low-K+-induced increases in the Na,K-ATPase alpha1- and beta1-subunit protein abundance and ouabain binding sites. The antioxidants had no significant effect on the basal levels of CAT activity, protein abundance, or ouabain binding sites. In conclusion, low K+ enhances the Na,K-ATPase gene expression by a direct stimulation of the promoter activity, and ROS mediate this stimulation and also low-K+-induced increases in the Na,K-ATPase protein contents and cell surface molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system.

We set out to determine whether cellular hypoxia, via mitochondrial reactive oxygen species, promotes Na,K-ATPase degradation via the ubiquitin-conjugating system. Cells exposed to 1.5% O2 had a decrease in Na,K-ATPase activity and oxygen consumption. The total cell pool of alpha1 Na,K-ATPase protein decreased on exposure to 1.5% O2 for 30 hours, whereas the plasma membrane Na,K-ATPase was 50% ...

متن کامل

Protein Carbonylation of an Amino Acid Residue of the Na/K‐ATPase α1 Subunit Determines Na/K‐ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells

BACKGROUND We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K-ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K-ATPase α1 subunit, reactive oxygen species are required for ouabain-stimulated Na/K-ATPase/c-Src signaling and subsequent regulat...

متن کامل

The reactive nitrogen species peroxynitrite is a potent inhibitor of renal Na-K-ATPase activity.

Peroxynitrite is a reactive nitrogen species produced when nitric oxide and superoxide react. In vivo studies suggest that reactive oxygen species and, perhaps, peroxynitrite can influence Na-K-ATPase function. However, the direct effects of peroxynitrite on Na-K-ATPase function remain unknown. We show that a single bolus addition of peroxynitrite inhibited purified renal Na-K-ATPase activity, ...

متن کامل

Corrigendum: Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac mo...

متن کامل

The role of Na+-K+-ATPase in the basic and rate-dependent properties of isolated perfused rabbit Atrioventricular Node

Introduction: Ouabaine is a well-known atrioventricular (AV) node depressant agent, but its effects on functional properties of the AV node have not been cleared. The aim of the present study was to determine how ouabaine administration modifies the rate-dependent properties of the AV node. Methods: Selective stimulation protocols were used to quantify independently electrophysiological prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 285 2  شماره 

صفحات  -

تاریخ انتشار 2003